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1. Introduction

Collision processes, taking place between (sub)atomic particles, are
generally expressed in terms of scattering amplitudes. These functions, when
squared, represent the probabilities of obtaining specific outcomes in a
scattering event as to the momentum and energy transfer between colliding
partners. The amplitudes themselves are functions of the projectile's incoming
and outgoing momentum vector.

Titchmarsh [9] has shown that a function, which is analytic and
bounded in its complex continuated variable, can be written in the form of an
integral expression., Applying this theorem to the scattering amplitude for
forward elastic scattering of electrons on noble gas atoms yields the so-called
dispersion relation [3]
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Here, E is the projectile electron's impact energy and P the principal value
integral. Since electrons are indistinguishable, the amplitude consists of a
direct and an exchange part; the latter accounts for the interchange of the
projectile electron and one of the atomic electrons. The subscript B denotes
the first Born approximations to these two parts respectively. The real and
imaginary parts are related to the differential and total cross sections res—
pectively, which are both in principle measurable quantities,

It remains, however, to prove the analytical behaviour of the ampli-
tude for this relation to be valid. Recent investigations [1,2] have shown
that (1.1) has to be modified: an extra term, the "discrepancy function™ A(E),
is added to the right-hand side due to a cut along the part of the negative
real energy axis, where the exchange amplitude appeared to be non-analytic.

e

(1.2) AE) = 7! J %%%rdr, c<E<d,

a
where p(E') is the discontinuity of the non-Born part of the exchange ampli-
tude across this cut. Sofar, direct computation of p(E') has not been possible
yet, not even for the simplest system of electron-atomic hydrogen scattering
[2]. On the bther hand, a recent experimental study [10] has addressed the
magnitude of A(E) at various impact energies, where helium was used as target.

By inverting (1.2), it is hoped then to gain more insight into the
behaviour of p(E'), in particular with respect to the possible existence of
isolated singularities.

The discrepancy function A(E) is measured in a set of 23 non-
equidistant points Ei’ i=1,2,...,23, in the interval [1,300],
with a relative error which varies between 1 and 5%Z. For E > 500, A(E) may be
assumed to vanish.

With respect to the unknown function p(E') in (1.2), we may assume
that it tends to zero, as E' = o, at least as fast as (E')—i. Under this
assumption we replace the infinite upperbound in (1.2) by a finite number b.
The neglected part bfw can then be estimated as follows:

f=~] [==] @

(1.3) 1%~ J (E+E')"1p(E')dE'l < % J (E+E')—1(E')—%dE' < % J (E")

b b
-1 -1 .
The last term equals 2w ‘b 2, Hence, by taking b large enough, the neglected

=3/24p0,

part can be made small, compared with the error in A(E) (cf. section 4).
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Equation (1.2) is a special case of a Fredholm integral equation of

the first kind:
b

(1.2')  A(E) = J K(E,E")p(E')dE', ¢ <E < d.

a
This type of integral equation arises in the mathematical analysis of problems
from many branches of physics, chemistry and biology [5]. Also various
classical mathematical problems, like the problem of harmonic continuation,
numerical inversion of the Laplace transform, the backwards heat equation and
numerical differentiation, can be formulated in terms of equations of the
form (1.2').

First kind Fredholm equations belong to the class of ill-posed
problems [4]. In particular, this means that (i) there may be no solution,

(ii) a solution may not be unique and (iii) if we perturb the given function A
with a small amount, the solution of the perturbed problem (if it exists) may
differ from the original solution with a very large amount. Therefore, great
care must be exercised when we solve (1.2) numerically, in particular, in view
of the inexact data function A.

In this paper we present the results of experiments with the well-
known regularization method of Phillips and Tihomov [6,8] for numerically
solving (1.2'). The results show that it is possible to obtain satisfactory
results with the regularization method at least in a qualitative sense, for

problems (1.2') with highly inexact data,

2. The regularization method of Phillips and Tihonov

The regularization method of Phillips and Tihonov essentially

amounts to the replacement of (1.2') by the well-posed problem

Minimize the quadratic functional Qa(p), defined by

2

(2.1) 0,(0) t= Ko = A1L% + aligpll

over all functions in the compact set {p : Il Kp — All < e}.

Here, X : F > G is a linear operator defined by (Kp)(E):=afb K(E,E")p(E")dE',

where F and G are certain linear spaces and !l 1l is some norm in F and C.
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L is a linear operator (L : F » F) and a is a fixed positive number, to be

chosen a priori. For later use, we write: Lp = a (p p) + a dp/dE + a d o/dE2

where a;, = 0 or 1 and p = p(E) is an a priori known approximation to p. The

number € in (2.1) reflects the presence of error in the data function Ay if A
were known exactly, we would look for p such that Ko = A; since, however, A is
known only approximately, we (have to) content ourselves with finding ¢ such
that 1 Kp - all <

Under certain, mild conditions (which we assume to be fulfilled),
(2.1) has a unique solution, which we denote by e

The proper choice of o and L in (2.1) is of crucial importance.
Unfortunately, no general rule for choosing o and L is known. The following
heuristics may be helpful. As is well-known, the presence of a in (2.1)
provides a balance between, on one hand, minimization of Il kp - all , i.e.,
solving Xp = A (0=0) and, on the other hand, minimization of the "penalty"
term !l Lp!l (a large). Therefore, it seems reasonable to choose ain such a way
that the solution 0, of (2.1) satisfies !!Kpa - Allm™ ¢, where ¢ is the
(average) error in A. Another possibility is to let o be approximately equal
to sz. This choice is motivated by the fact that, under certain conditions,
the solution Py of (2.1) tends to the solution of Xp = A (if it exists) if

€-0 and if o satisfies Clez < ac< Czez, Cl’ C2 > 0.

3. Numerical solution of (2.1)

In [7], a subroutine for numerically solving first kind Fredholm
integral equations (1.2') via the minimization problem (2.1) of Phillips and
Tihonov has been described and documented. In this subroutine, a linear
system of equations is solved which results from discretization of the
continuous problem (2.1). Here, we only give the linear system and for its
derivation we refer to [7].

Suppose that A(E) is given in N points E=Ei’ i=1,2,...,N (cSE1<...
<ENsd) with A(Ei)=:Ai; moreover, let the integration interval [a,b] be
subdivided by the N+l points E'=EJ!, 3=0,1,...,N (a=E6<E; <l <EI:I=b). The
points Ei and E! need not be equidistant. Discretization of (2.1) (where the
integrals over [E},E5+l] are approximated by using the mid-point rule) leads

to the following linear system:
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T S b d A
(3.1) {K'K + a(aOHO + aIHI + a2H2)} p=KA4+oaap.
= =(E'-E! K(E.,El), E!=1(E! +E!);
Here’ K: (Klj)’ Where Ki_] (EJ EJ"'l) ( l, J)’ J 2( J_l J),

-> T = . . . . s . o,
p=(pl,p2,,..,pN), pjw p(Eg) is an approximation of p in the mid-point Ej’
- T
A=(A1,A2,...,AN) H
Py A A P
6:(31,32,,,,,pN)I pj is an approximation of pj to be given a priori, 1f
a.=1;
0 5
H0 is the NxN identity matrix,
1 -1 1 -2 1
-1 2 -1 -2 5 -4 1
-1 2 -1 I -4 6 -4 1
Hl B ) . ) . ) . H2= .- .. '- ‘. .o :
-1 2 -1 1 =4 6 =4 1
_ -1 2 1 -4 5 =2
NXNL_ 1 =2 1)

4, Numerical experiments

4,1 A problem with known solution

As a test, we first solved the equation

£ '1n (1+E/a> , 1<E=x<2,

i

3
(4.1) ]J @+ EY (@) dE =

which has a known solution p(E")

(E')—]. In table I we list the minimum
number of correct digits obtained with N=8 data points, for a=10—i, i=0,1,...,
9, for Lp=p, Lp=dp/dE and Lp=d2p/dE2, respectively. We also list in table I
the corresponding results obtained in case the data points Aj were perturbed
with 1% random error (i.e., the exact values Aj were multiplied by the factor
1+ O.OIX(Zij—l), where Yj is a random number taken from the interval [0,1)).
In the case of exact data, the best results were obtained for o in
the range (!0_8 - 10-4), whereas in the case of inexact data the best results

were obtained for much larger values of o (10—4 - 10-3).
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Table I. The regularization method of Phillips and Tihonov applied to (4.1)

First entry :minimum number of correct digits in B!, 3=0,1,...,7;
J

> > . -
second entry:|[ Kp—All, Il -]l is the Euclidean vector norm; a(~b) means: a<10 b.

a Lo = p Lp = dp/dE Lp = dzp/dE2
Data exact 1 0.1  7(-1) 0.2 5(=3) 0.6 3(=5)
1(-1) 0.5 2(-1) 0.2 5(-3) 0.6 3(-5)
1(-2) 0.7  3(-2) 0.2 5(=3) 0.6  3(-5)
1(-3) 0.7 4(=3) 0.5 3(-3) 0.6 3(=5)
1(-4) 1.1 1(-3) 1.0 7(=4) 0.6 3(-5)
1(-5) 1.4 2(-4) 0.9  9(-5) 0.6 3(-5)
1(-6) 1.2 3(-5) 0.9 3(-5) 0.7 3(-5)
1(-7) 1.4 1(=5) 1.0 2(-5) 1.4 1(-5)
1(-8) 1.3 5(-6) 1.0 7(-6) 0.8 2(-6)
1(-9) 1.1 8(-7) 0.7 1(-6) 0.8 4(=7)
Data inexact 1 0.1 7(-1) 0.2 9(-3) 0.8 3(-3)
— 1(-1) 0.5 2(-1) 0.2 9(-3) 0.8 3(-3)
(;Z§ggﬁmef§§r’ 1(-2) 0.7 3(=2) 0.2 9(-3) 0.8 3(-3)
- 1(-3) 0.8 8(-3) 0.7 7(-3) 0.8 3(-3)
1(-4) 0.8 5(-3) 0.5 5(=3) 0.8 3(-3)
1(-5) 0.3 4(-3) 0.5 5(-3) 0.8 3(-3)
1(-6) 0.2 4(=3) 0.1  4(=3) 0.5 3(-3)
1(-7) -0.2  4(-3) -1.0 4(-3) =-0.1 3(-3)
1(-8) -0.6  4(-3) -1.6 2(-3) -0.3 3(-3)
1(-9) -0.7  4(-3) -1.7 2(-3) -0.1 3(-3)

Other experiments with a problem with known solution and inexact data

(maximum 37 random error) show a similar pattern of results [7].

4,2 Numerical solution of problem (1.2)

In view of (1.3), we replaced the infinite upperbound in (1.2) by
b = ZXI06, which adds an error to A whose absolute value is less than 0,0005,
This is small compared with the measuring errors in the physical data A(Ei)'
These data values are given in table II (set I). The lowerbound of integration
in (1.2) was given to be a=24.5. In order to work with an interval for E which
has about the same length as the integration interval for E' ([24.5,ZXIO6]), we
added 11 points Ei with value A(Ei)=0 (see table II). This gave a total of N=34
data points. The points Ei were chosen such that their distribution was similar
to that of the points Ei:
6 6

| - | - T =
E} = 24.5, E}, = 10°, E}, = 2x10°,
(4.2) . EJ._H—El . , 5
=T [ A —— - 1 = .
B} =+ 3 x (Byy - ED), § = 1,2,...,32

34
With these provisions (1.2) was solved with the regularization method of

eoqs . - 2 2
Phillips and Tihonov for a = 10 4, and Lp =d p/dE".
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Table II, Data values A(Ei)

(unmentioned values in the data sets II, III and IV are equal to the
corresponding values in data set I)

A(Ei)=Ai

i E; I(lump in E=26) II(lump smoothed out) III(lump in E=20) IV(lump in 30)
1 1.5 0.60 . . .

2 2.5 0.55 . . .

3 3.1 0.52 . . .

4 5,1 0,49 . . .

5 7.1 0.47 . . .

6 9.1 0.45 . . .

7 11.2 0.42 . . .

8 13.1 0.40 . . .

9 15.1 0.39 . 0.38 .
10 17.1 0.37 . 0.38 .
11 20.0 0.35 0.35 0.39 « .
12 22,0 0.35 0.34 0.37 0.34
13 24,5 0.33 0.33 0.35 0.33
14 26.0 0.36 « 0.32 0.33 0.32
15 28.0 0.34 0.31 0.31 0.31
16 30.0 0.33 0.30 0.30 0.33 «
17 35.0 0.29 0.28 0.28 0.31
18 40.0 0.25 . . 0.25
19 50.0 0.17 . . 0.19
20 70.0 0.13 . . 0.14
21 100 0.11 N . o
22 200 0.06 . . .
23 300 0.02 .

In the data sets I, II, III and IV, 11 zero values A24""’A3A were added,

viz., for E=500, 1000, 2500, 5000, 10000, 25000, 50000, 100000, 250000,
500000 and 1000000.

Figure I gives a graph of Fhe numerical solution e obtained by
drawing a smooth curve through the computed values Pye Figure II shows the
corresponding graph obtained with the data set II given in table II. This data
set was obtained from data set I by smoothing out the small lump around E=26.
Data sets III and IV were obtained from data set I by moving the lump from E=26
to E=20 and to E=30, respectively. The resulting graphsAare shown in figures
111 and IV. The curves in figures I, III and IV, although quantitatively
different, show one common qualitative feature: there is one (relative)
maximum. As the lump in the data is shifted towards greater values of E, this
maximum decreases and moves slowly to greater values of E'. Figure II shows
that this maximum in Py has a one~to-one relationship with the lump in the
data A. A final experiment with data set I was carried out as follows: the

starting point Eé of integration in (1.2) was changed from E6=24.5 to E6=20
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obtained with data sets I and II, resp.

o

Figures I and II Numerical solutions p

Figure I
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o obtained with data sets III - IV, resp.

Figures III - IV Numerical solutions p

Figure III

Figure IV
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and to E6=15, respectively. The points Ej, j=1,2,...,32 were recomputed
according to (4.2), and the system (3.1) was solved. In both cases, the resul-
ting curves showed the same qualitative behaviour as the curve in figure I.
Moreover, the following common quantitative feature was observed: the location

of the relative maximum in P, Was approximately the same for the three
experiments, viz,, E'~ 48,

The experiments described above were also carried out for several

other values of a in the range (10--5 - 10_3) and the results were very similar

to the results obtained for a=10_4. In our experiments with problems with a
known solution and inexact data (cf. section 4.1 and [7]), we used the same
kernel (E"‘E')_1 as in (1.2) and we obtained the best results also for o in the
range (10—5 - 10-3). Therefore, we may conclude that the numerical solution
obtained for the physical problem (2.1) in figure I is reliable, at least in a
qualitative sense, and that this is the best result that can be obtained, given

the errors in the data function A, and given the mathematical model (1.2 of the

physical problem.
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